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Abstract. In this paper we propose a novel feature descriptor Extended
Co-occurrence HOG (ECoHOG) and integrate it with dense point tra-
jectories demonstrating its usefulness in fine grained activity recognition.
This feature is inspired by original Co-occurrence HOG (CoHOG) that
is based on histograms of occurrences of pairs of image gradients in the
image. Instead relying only on pure histograms we introduce a sum of
gradient magnitudes of co-occurring pairs of image gradients in the im-
age. This results in giving the importance to the object boundaries and
straightening the difference between the moving foreground and static
background. We also couple ECoHOG with dense point trajectories ex-
tracted using optical flow from video sequences and demonstrate that
they are extremely well suited for fine grained activity recognition. Us-
ing our feature we outperform state of the art methods in this task and
provide extensive quantitative evaluation.

1 Introduction

In the past years various techniques for visual analysis of humans have been stud-
ied in the field of computer vision [1]. Human tracking, body pose estimation,
activity recognition and face recognition are just some examples of analysis of
humans from videos that are relevant in many real-life environments. Recently,
human activity recognition has become a very active research topic and several
survey papers have been published, including those by Aggarwal et al. [2], Moes-
lund et al. [3], and Ryoo et al. [4]. The number of applications is vast and they
include, but are not limited to video surveillance, sports video analysis, medi-
cal science, robotics, video indexing, and games. To put these applications into
practice, many activity recognition methods have been proposed in recent years
to improve accuracy. Activity recognition means determining the activity of the
person from a sequence of images. In case of very similar activities with the subtle
differences in motion we talk about fine-grained activities. The classical recog-
nition pipeline starts with extracting some kind of spatio temporal features and
feeding them into the classifiers trained to recognize such activities. However,
in case of fine-grained activities minor differences between extracted features
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frequently affect the classification of an activity. This makes visual distinction
difficult using existing feature descriptors. For fine-grained activity recognition,
Rohrbach et al. [5] confirmed that dense sampling of feature descriptors achieved
better results than joint features based on posture information.

In this paper we propose Extended Co-occurrence HOG (ECoHOG) feature
and integrate it with dense sampling and dense feature extraction approach in
order to improve accuracy of fine-grained activity recognition. We rely on Co-
occurrence Histograms of Oriented Gradients (CoHOG) [6] as a feature descrip-
tor representing co-occurrence elements in an image patch. The co-occurrence
feature clearly extracts an object’s shape by focusing on co-occurrence of image
gradients at the pairs of image pixels and in that way reduces false positives.
We extend this feature by adding sum of the magnitude of the gradients as co-
occurrence elements. This results in giving the importance to the object bound-
aries and straightening the difference between the moving foreground and static
background. In addition we apply this descriptor on the dense trajectories and
test it for fine grained activity recognition.

We tested influence of our ECoHOG feature coupled with dense trajectories
on two fine-grained activity recognition datasets: MPII cooking activities dataset
[5] and INRIA surgery dataset [7] and obtained increase of performance using
only this features in contrast to the use of HOG [16], HOF (Histograms of Optical
Flow) [11] and MBF (Motion Boundary Histograms) [17] used in Wang et al.
[8][9].

2 Related Work

A large amount of activity recognition research has been undertaken in the past
decade. The first noteworthy work is Space-Time Interest Points (STIPs) [10].
The STIP algorithm is an improvement of Harris corner detector for x-y and time
t space. STIPs are three dimensional descriptors representing motion of corner
points in time. The spatio-temporal sampling and feature description framework
is widely used by the activity recognition community. Klaser proposed 3D-HOG
et al. [12], while Marszalek et al. [13] described feature combination using the
STIP framework. Recently, Everts et al. proposed color STIPs with four different
color spaces added to standard STIP descriptor [14].

However, up to date the best approach for activity recognition is arguably
“dense trajectories” proposed by Wang et al. [8][9], which is a trajectory-based
feature description on dense sampling feature points. Using these trajectories
histograms of oriented gradients (HOG) [16], histograms of optical flow (HOF)
[11], and motion boundary histograms (MBH) [17] can be acquired. Rohrbach
et al. claimed that dense trajectories outperformed other approaches in terms of
accuracy on the MPII cooking activities dataset, which is a fine-grained dataset
with 65 activity classes. Dense trajectories are also superior to posture-based
feature descriptors on the dataset [15]. Dense sampling approaches for activity
recognition have also been proposed in [18], [19], [20], [21], [22]) after the intro-
duction of the first dense trajectories [8]. Raptis et al. implemented a middle-level
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Fig. 1. Proposed framework: Pyramidal image capture and dense optical flow extrac-
tion are the same as the original dense trajectories. In feature extraction, we incor-
porate improved co-occurrence features (ECoHOG) in the dense trajectories. The co-
occurrence vectors are reduced for effective vectorization as a bag-of-features (BoF)
[23]. Finally, the co-occurrence vector is merged into other feature vectors (HOF,
MBHx, MBHy, and Trajectory).

trajectory yielding simple posture representation with location clustering [18].
Li et al. translated a feature vector into another feature vector at a different
angle using the “hankelet” approach [19]. To eliminate extra-flow, Jain et al.
applied affine matrix [20] and Peng et al. proposed dense optical flow capture in
the motion boundary space [21]. Wang et al. realized improved dense trajecto-
ries [22] by adding camera motion estimation, detection-based noise canceling,
and a Fisher vector [24].

Several noise elimination approaches have been considered in this field to im-
prove recognition performance, however, feature extraction is not enough. Thus,
we introduced an improved feature descriptor into dense trajectories which we
call Extended Co-occurrence HOG. This feature relies on the co-occurrence of
the image gradients inside an image patch described with the normalized sum
of the gradient intensities of co-occurring gradients. This helped distinguish-
ing the moving foreground from the static background while capturing a subtle
differences inside the image patches of the moving human body parts.

3 Proposed Framework

In this paper, we propose an improved co-occurrence feature ECoHOG and use
it for fine-grained activity recognition. ECoHOG feature represents the gradient
magnitude in a co-occurring image gradients located on the image patch and
emphasize the boundary between the human and the background and between
the edges within the human. Figure 1 shows the proposed framework applied in
the context of fine-grained activity recognition. In essence, we have implemented
the original dense trajectories [9] that find trajectories and extract features on
the points along the trajectories. Using this framework and the concept of dense
trajectories we integrated our improved co-occurrence feature (ECoHOG) into
the HOF, MBH, and trajectory vectors. Finally we performed the dimensionality
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reduction in order to convert the co-occurrence feature into a bag-of-features
(BoF) vector [23].

The rest of the paper is organized as follows. In the next section we describe
the extended co-occurrence feature descriptor and its vectorization using the
BoF. In the next section we presents our experimental results using fine-grained
activity datasets. Finally in the last section we conclude the paper.

4 Feature Description & Vectorization

4.1 Co-occurrence Histogram of Oriented Gradients (CoHOG)

HOG feature descriptor is calculated by computing the histogram of oriented
gradients in the overlapping block inside the image patch. In practice gradient
magnitude are accumulated in a corresponding orientation histogram and nor-
malized within the block. Although the HOG can capture the rough shape of
a human it often results in false positive detections in cluttered scenes when
applied in tasks such as human detection. The Co-occurrence HOG (CoHOG)
is designed to accumulate co-occurrences of pairs of image gradients inside the
non-overlapping blocks of the image patch. Counting co-occurrences of the im-
age gradients at different locations and in differently sized neighborhoods reduces
false positives. For example, a pixel pair of the head and shoulders is described
at the same time meaning that these two body parts, i.e. their edges, should
always co-appear. As reported in [6] this proved to be more robust to the clutter
and occlusions then standard HOG for human detection. In CoHOG eight gradi-
ent orientations are considered and co-occurrence of each orientation with each
other orientation has been counted. This results in 8× 8 = 64 dimensional his-
togram called co-occurrence matrix. In practice not only direct neighbors with
offset one have been considered, but co-occurrence has also been regarded for
larger offsets resulting in up to 30 co-occurrence histograms per image block.
The co-occurrence histogram is computed as follows:

g(x, y) = arctan
fy(x, y)

fx(x, y)
(1)

fx(x, y) = I(x+ 1, y)− I(x− 1, y) (2)

fy(x, y) = I(x, y + 1)− I(x, y − 1) (3)

Cx,y(i, j) =
n∑

p=1

m∑
q=1

1, if d(p, q) = i and d(x+ p, y + q) = j

0 otherwise

(4)

where I(x, y) is the pixel value, g(x, y) is the gradient orientation. C(i, j) denotes
the co-occurrence value of each element of the histogram, coordinates (p, q) de-
pict the center of the feature extraction window, coordinates (p+x, p+y) depict
the position of the pixel pair in the feature extraction window, and d(p, q) is one
of eight the quantized gradient orientations.
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The CoHOG can express the co-occurrence edge orientation acquired from
two pixels and has higher accuracy than the HOG because of the co-occurrence
edge representation. However, it faithfully counts all co-occurrence edges re-
gardless of the edge magnitude. Human detection with a CoHOG results in false
positives depending on the presence of an edge in a local image. Similar objects
(e.g., trees and traffic signs) to a human have many elements whose histograms
are similar. We believe that including the edge magnitude into the CoHoG is
effective in creating a feature vector for human detection and therefore propose
to extend CoHoG with magnitudes of the co-occurring gradients.

4.2 Extended Co-occurrence Histograms of Oriented Gradients
(ECoHOG)

In this section, we explain the method for edge magnitude accumulation and
histogram normalization, which we included in the ECoHOG. This improved
feature descriptor is described below.

Accumulating Edge Magnitudes. Human shape can be described with the
histograms of co-occurring gradient orientations. Here we add to it the magni-
tude of the image gradients which leads to improved and more robust description
of the human shapes. In contrast to CoHOG, in our proposed framework we ac-
cumulate the sum of two pixel gradient magnitudes in the pairs of co-occurring
pixel location inside the block of the image patch. The sum of edge magnitudes
represents the accumulated gradient magnitude between two pixel edge magni-
tudes at different locations in the image block. In this way, for example, the
difference between pedestrians and the background is more strengthened. The
ECoHOG is defined as follows:

Cx,y(i, j) =
n∑

p=1

m∑
q=1


∥g1(p, q)∥+ ∥g2(p+ x, q + y)∥
if d(p, q) = i and d(p+ x, q + y) = j

0 otherwise

(5)

where ∥g(p, q∥ is the gradient magnitude, and C(i, j), and all the other elements
are defined as in Eqs. (1)–(3).

ECoHOG describes the magnitude for each pair of co-occurring pixel gradi-
ents and in that way creates a more robust co-occurrence histogram. It efficiently
expresses the boundary between human and the background and also between
the different textures of the clothing of the same human. Edge magnitude rep-
resentation can define a boundary depending on the strength of the edges. This
feature descriptor represents not only the combination of curves and straight
lines, but also performs better than the CoHOG.

Histogram Normalization. The brightness of an image changes with respect
to the light sources. The feature histogram should be normalized in order to
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Fig. 2. Extended CoHOG in dense trajectories

be robust for human detection under various lighting conditions. The range
of normalization is 64 dimensions, that is, the dimension of the co-occurrence
histogram. The equation for normalization is given as:

C
′

x,y(i, j) =
Cx,y(i, j)∑8

i′=1

∑8
j′=1 Cx,y(i′, j′)

, (6)

where C and C
′
denote histograms with and without normalization, respectively.

4.3 Extended CoHOG in Dense Trajectories

According to [9] the image is tessellated into a grid of 2 × 2 blocks and that
small patch is tracked using optical flow in three consecutive frames. This re-
sults in dense trajectories of densely sampled image grid. [9] propose to compute
multiple features like HOG, HOF and MBH in frames along the time trajectory
and concatenate into one spatio-temporal histogram resulting in (X-Y-T) space–
time block as shown in Fig. 2. Instead of computing HOG, HoF and MBH we
compute our ECoHOG feature and concatenate the in time. Computation of
co-occurrence description looks not in real-time, however, divided blocks can be
calculated in parallel. Parallel processing allows us to calculate ECoHOG nearly
efficient as HOG, HOF and MBH. Depending on the size of the neighborhoods
different offsets are used to collect co-occurrence of the image gradients in ECo-
HOG. This results into a number of histograms per image block and continuous
spatio-temporal feature has huge dimension.

Dimensionality reduction and Bag-of-Features. In order to bring it to the
reasonable size and make it computationally tractable we perform PCA in order
to reduce dimension of our features. A low-dimensional vector is generally easier
to divide into a collection of classes, i.e. to cluster into bags of features (BoF).
In related work, the CoHOG required about 35,000 dimensions for pedestrian
detection [6]. However, we use a low-dimensional vector of 4000 dimensions to
compose a BoF vector for activity recognition. In the experiments, we define and
analyze an effective parameter for dimensionality reduction.
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The BoF effectively represents a visual vector in an image [23]. An image
generally consists of a large number of small patches called visual words. The
BoF calculates the distribution to form feature vectors. Following the original
dense trajectories, we randomly select millions of vectors from a dataset. The
K-means clustering algorithm categorizes them into 4000 cluster, i.e. into 4000
visual words. The value of K is the dimension of our ECoHOG used in our
experiments. We use the sum of the squared difference to calculate the nearest
BoF vector f for each input feature in each frame.

So in training for each fine grained activity dense trajectories are described
using ECoHOG whose dimensions are reduced using PCA and they are all clus-
tered into 4000 visual words. In ECoHOG representation, the feature models
weighting gradient magnitude and it effectively evaluate edge features in co-
occurrence elements. The ECoHOG features vectorize almost the same BoF vec-
tors if activity is in the same class. The statistical learning allows us to classify
a large number of activity classes, in other words, the feature can be better
approach in fine-grained activity categorization.

5 Experiments

We carried out experiments to validate influence of our ECoHOG feature in
fine-grained activity recognition. In this section, we discuss the datasets, param-
eter selection, and comparison of the proposed approach with state-of-the-art
methods. The classifier setting is based on the original dense trajectories [9].

5.1 Datasets

We used two different datasets for fine-grained categorization. Visual distinction
is difficult because the categories are often subtly different in the feature space.
Moreover, they are difficult to distinguish using current activity recognition ap-
proaches. The INRIA surgery dataset [7] and MPII cooking activities dataset [5]
are discussed below.

INRIA surgery dataset [7]. This dataset includes four activities performed
by 10 different people with occlusions; e.g., people are occluded by a table or
chair (see Figure 3). The activities include cutting, hammering, repositioning,
and sitting. Each person performed the same activity twice, one for training and
another for testing in this experiment.

MPII cooking activities dataset [5]. This dataset contains 65 activities
(see Table 2) performed by 12 participants. These activities can be broadly
categorized into a few basic activities, such as seven ways of “cutting”, five ways
of “taking”, and so on. In total, the dataset comprises 8 hours (881,755 frames)
in 44 videos. Performance is evaluated by leave-one-person-out cross-validation.
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Fig. 3. INRIA surgery dataset [7], which includes four activities (cutting, hammering,
repositioning, sitting).

5.2 Parameter selection

Figure 4 shows the relationship between the parameter settings and accuracy
of the co-occurrence feature. In this situation, we must set the number of di-
mensions for PCA and offset size in the ECoHOG. Other settings for the dense
trajectories and co-occurrence feature are based on [9] and [6], respectively. Here
we focus on the seven “cutting” activities, which represent the most fine-grained
category (Table 2 shows that activities 3 to 9 are the most confusing in terms
of accurate recognition) in the MPII cooking activities dataset.

Figure 4(a) and (b) shows the number of dimensions and accuracy of the
seven activities in the “cutting” category. The graph in Figure 4(a) shows that
using a feature vector with 50 dimensions achieves the highest accuracy, and
therefore, detailed results for 50 to 100 dimensions are depicted in Figure 4(b).
From these results, we can judge the importance of balancing the “contribution
ratio in PCA” and the “size of the feature space”. As shown in Figure 4(b), 70
is the optimal value for creating the BoF vector in the ECoHOG feature.

Figure 4(c) shows the relationship between offset (feature extraction window)
size and accuracy, with 5× 5 being the optimal offset in this experiment. Most
edge orientation pairs are extracted with a 1.0–3.0 pixel distance in commonly
used edge orientation according to this figure. It is also important to consider
“pixel similarity”. Since near field pixels tend to have similar features, the feature
vector should be designed to capture pixel similarity. Figure 5 shows the top 50
frequently used ECoHOG elements with an offset size of 11 × 11. According to
the figure, neighboring pixels mostly support effective feature extraction. In the
rest of the experiments we used 70 dimensional features and offset length of 5×5
pixel.

5.3 Comparison of Proposed and State-of-the-art Methods

In this section, we enumerate the experimental results on the INRIA surgery
and MPII cooking activities datasets to compare the proposed approach with
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Fig. 4. Co-occurrence feature parameter settings for cutting activities (nos. 3–9 in
Table 2): (a) number of dimensions for PCA; (b) detailed number of dimensions from
50 to 100 dimensions; (c) relationship between offset size and accuracy.

Table 1. Accuracy of the proposed and conventional frameworks on the INRIA surgery
dataset.

Approach Accuracy (%)

Tracking + HOG 40.16

Original Dense Trajectories 93.58
(HOG, HoF, MBH, Trajectory)

CoHOG in Dense Trajectories 81.05
(CoHOG)

ECoHOG in Dense Trajectories 96.36
(ECoHOG)

Improved Dense Trajectories 97.31
(ECoHOG, HOF, MBH, Trajectory)

state-of-the-art methods. In other words, we apply the original dense trajec-
tories, CoHOG / ECoHOG in dense trajectories, and an integrated approach
(ECoHOG, HOF, MBH, Trajectory). Simple HOG is consist of any tracking
method and HOG description. We track a human and extract HOG feature in
a tracked bounding box.

Experiment on INRIA surgery dataset. Table 1 shows the classification
results on the INRIA surgery dataset. The original dense trajectories [9] achieved
93.58% accuracy thanks to dense sampling and the use of multi-type feature de-
scriptions, whereas our proposed approach achieved 96.36%, applying only ECo-
HOG on the dense feature extraction on densely sampled trajectories. However,
the integrated approach achieved a better result than the other two approaches
(97.31% accuracy). ECoHOG improves CoHOG by including edge-magnitude ac-
cumulation, which expresses co-occurrence strength. ECoHOG comprehensively
evaluates edge features and effectively generates more distinguishable BoF fea-
tures in an image patch. ECoHOG represents the edge-boundary, which can
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Fig. 5. (Top row) image patches on dense trajectories from MPII cooking dataset.
(Remaining rows: left to right and top to bottom in decreasing order) top 50 frequently
used offsets and orientations with 11 × 11 pixel offset.

effectively be added to the co-occurrence feature in fine-grained categorization.
Overall, ECoHOG performed 15.31% better than CoHOG in the framework with
dense trajectories, and 2.78% better than the original dense trajectories. The in-
tegrated approach performed slightly better (0.95%) than ECoHOG in the dense
trajectories. In this context, other features, such as HOF, MBH, and Trajectory,
supplement the ECoHOG feature in representing spatial and temporal image
features. ECoHOG mainly represents the shape feature, while the other features
capture motion features in the video sequences.

Experiment on MPII cooking activities dataset. Table 2 shows the re-
sults on the MPII cooking activities dataset. The dataset contains 65 classes of
cooking activities for measuring fine-grained activity recognition performance.
The results for method 2, original dense trajectories, in Table 2 were taken from
[5] as the baseline method. The original dense trajectories achieved 44.2% accu-
racy (without pose feature combination) on the dataset using HOG, HOF, MBH,
and Trajectory features. ECoHOG in dense trajectories (method 4 in Table 2)
achieved 46.6% better accuracy than the baseline. At the same time, CoHOG
in dense trajectories (method 3 in Table 2) is superior to the baseline. Ac-
cording to these results, the co-occurrence feature effectively represents detailed
space–time shapes in fine-grained activities. The combined method (method 5
in Table 2) achieved 49.1% better accuracy than the other approaches with all
types of features (ECoHOG, HOF, MBH, Trajectory). According to these results,
HOF/MBH/trajectory features complementarily extract image features from the
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ECoHOG feature, which contains co-occurrence orientation and edge magnitude
information on the edge extraction window. The co-occurrence feature mainly
captures shape information; however, a detailed configuration is expressed from
image patches on trajectories. On the other hand, the HOF/MBH/Trajectory
features handle motion features between frames, which aid activity recognition
in the fine-grained dataset. The combined approach achieves slightly better ac-
curacy than ECoHOG in dense trajectories. In this experiment, performance
of ECoHOG was 0.4% better than CoHOG and 2.4% better than the original
dense trajectories. The combined model with ECoHOG/HOF/MBH/Trajectory
features represents image features comprehensively and achieves 4.9% better
accuracy than the baseline method.

The similarity of feature histogram is directly linked to significant BoF vector.
We evaluate the similarities of CoHOG and ECoHOG feature as co-occurrence
representation. Figure 6 shows the histograms of self-similarity on image patches
(similar to Figure 5) from the MPII cooking activities dataset. In this case, 1,000
image patches were selected to calculate histogram similarity, giving the number
of combinations nCk, n = 1000, k = 2 (= 499500). We used the Bhattacharyya
coefficient [25] to calculate histogram similarity:

S =
m∑

u=1

√
h1
uh

2
u (7)

where S is the similarity value (0 ≤ S ≤ 1), h1 and h2 are feature vectors nor-
malized as

∑m
u=1 h

1
u =

∑m
u=1 h

2
u = 1.0, and m denotes the number of histogram

bins. The graphs show that ECoHOG has higher self-similarity scores; that is,
ECoHOG tends to evaluate similar features and creates better BoF vectors.

6 Conclusion

In this paper, we proposed an improved co-occurrence feature in dense trajec-
tories. The proposed approach, which achieves 96.36% accuracy on the INRIA
surgery dataset and 46.6% accuracy on the MPII cooking activities dataset, is
superior to state-of-the-art methods. The co-occurrence feature represents de-
tailed shapes on temporally dense sampling points. Comparing ECoHOG with
CoHOG, the magnitude accumulation yields the boundary division between ob-
jective motion and the background by magnitude weighting. We found that an
integrated approach (ECoHOG, HOF, MBH, Trajectory) achieves better accu-
racy 97.1% and 49.1%, respectively. These values are 3.73% and 4.9% better
than the proposed approach on the INRIA surgery dataset and MPII cooking
activities dataset, respectively.

We also investigated the parameter settings in the video datasets, that is,
offset length and number of dimensions in PCA of the co-occurrence feature.
Optimal parameter values for creating the BoF vector in the co-occurrence fea-
ture are 5 × 5 (pixel) offset length and 70 PCA dimensions. “Pixel similarity”,
which is the co-occurrence pairs are extracted from neighbor area must be con-
sidered in the offset length to adjust the dimension size. Moreover, the PCA
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Fig. 6. Self-similarity of CoHOG (top) and ECoHOG (bottom) for 1,000 randomly
chosen image patches from MPII cooking activities dataset: nCk self-similarities in the
graph (n = 1000, k = 2), the vertical axis denotes frequency and the horizontal axis
gives the percentage similarity.

dimension should balance the “contribution ratio in PCA” and “size of the fea-
ture space” for the BoF vector. Given the above, we experimentally chose 70
dimensions from the original 640 ECoHOG dimensions.
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Table 2. Accuracy of the proposed and conventional frameworks on the MPII cook-
ing activities dataset. Activity tags include 1.Background activity; 2.Change tempera-
ture; 3.Cut apart; 4.Cut dice; 5.Cut; 6.Cut off ends; 7.Cut out inside; 8.Cut slices;
9.Cut strips; 10.Dry; 11.Fill water from tap; 12.Grate; 13.Lid: put on; 14.Lid: re-
move; 15.Mix; 16.Move from X to Y; 17.Open egg; 18.Open tin; 19.Open/close cup-
board; 20.Open/close drawer; 21.Open/close fridge; 22.Open/close oven; 23.Package
X; 24.Peel; 25.Plug in/out; 26.Pour; 27.Pull out; 28.Puree; 29.Put in bowl; 30.Put in
pan/pot; 31.Put on bread/dough; 32.Put on cutting board; 33.Put on plate; 34.Read;
35.Remove from package; 36.Rip open; 37.Scratch off; 38.Screw closed; 39.Screw open;
40.Shake; 41.Smell; 42.Spice; 43.Spread; 44.Squeeze; 45.Stamp; 46.Stir; 47.Sprinkle;
48.Take & put in cupboard; 49.Take & put in drawer; 50.Take & put in fridge; 51.Take
& put in oven; 52.Take & put in spice holder; 53.Take ingredient apart; 54.Take out
of cupboard; 55.Take out of drawer; 56.Take out of oven; 57.Take out of oven; 58.Take
out of spice holder; 59.Taste; 60.Throw in garbage; 61.Unroll dough; 62.Wash hands;
63.Wash objects; 64.Whisk; 65.Wipe clean.: (1) original dense trajectories [5] (44.2%),
(2) CoHOG in dense trajectories (46.2%), (3) ECoHOG in dense trajectories (46.6%),
(4) combined model in dense trajectories with ECoHOG, HOF, MBH, and Trajectory
(49.1%). The tracking + HOG model recorded 18.2% on the MPII cooking activities
dataset.

Activity Number (1) (2) (3) (4) Activity Number (1) (2) (3) (4)

1 47.1 17.8 83.6 55.0 34 34.5 11.7 54.1 5.8

2 37.6 12.3 21.9 14.5 35 39.1 69.2 72.7 78.7

3 16.0 68.5 17.0 13.0 36 5.8 16.8 27.2 29.5

4 25.1 6.8 84.5 50.1 37 3.8 63.5 66.6 72.2

5 22.8 36.8 40.4 43.8 38 36.3 36.8 27.7 30.0

6 7.4 2.0 8.5 9.2 39 19.1 51.4 22.9 24.9

7 16.3 0.0 0.0 29.0 40 33.5 16.6 72.7 78.7

8 42.0 46.0 24.1 26.2 41 24.8 37.4 39.2 42.5

9 27.6 37.3 46.3 50.1 42 29.3 28.7 32.2 34.9

10 95.5 69.2 43.9 47.5 43 11.2 5.2 25.7 27.8

11 75.0 16.9 17.1 18.5 44 90.0 10.3 72.7 78.7

12 32.9 34.6 24.6 26.6 45 73.3 52.2 25.8 28.0

13 2.0 19.6 45.0 48.8 46 50.0 69.2 52.4 56.8

14 1.9 5.0 3.2 3.4 47 39.6 38.8 37.9 74.8

15 36.8 94.9 68.7 74.4 48 37.2 69.2 72.7 78.7

16 15.9 42.9 72.7 78.7 49 37.6 8.7 3.9 4.2

17 45.2 27.1 26.1 28.3 50 54.6 0.0 75.1 81.3

18 79.5 69.2 72.7 78.7 51 100 55.8 72.7 78.7

19 54.0 32.9 64.0 69.3 52 80.2 4.9 11.7 12.7

20 38.1 42.2 8.9 9.6 53 17.5 33.3 22.3 24.2

21 73.7 69.2 72.7 78.7 54 81.5 24.1 25.5 27.7

22 25.0 26.3 38.2 41.4 55 79.7 69.2 72.5 78.5

23 31.9 69.2 72.7 78.7 56 73.6 48.8 27.2 29.5

24 65.2 45.6 48.3 52.4 57 83.3 45.4 27.4 29.7

25 54.7 12.0 37.1 40.2 58 67.0 42.3 50.4 54.6

26 54.2 12.5 17.1 11.9 59 18.2 30.1 2.1 22.8

27 87.5 69.2 34.2 37.1 60 84.4 4.0 42.7 46.3

28 67.1 11.5 12.9 14.0 61 100 69.2 8.3 9.0

29 18.8 69.2 72.7 78.7 62 45.9 52.0 54.4 59.0

30 15.3 29.8 12.6 13.7 63 67.1 15.1 39.7 43.0

31 42.1 18.8 5.4 5.9 64 70.0 13.9 8.8 9.6

32 7.1 9.5 72.7 78.7 65 10.6 63.1 33.4 36.2

33 11.0 36.9 45.7 49.5 Mean 44.2 46.2 46.6 49.1


